What is SENSAT.R.A.C.™ Technology?
The patented SENSAT.R.A.C.™ Technology continuously monitors, measures and maintains the programmed negative pressure at the wound site for optimal healing outcomes.

Monitoring and Adjusting Software
- Continuously monitors and maintains programmed negative pressure at the wound site
- Adjusts pump output, compensating for wound distance, wound position, exudate characteristics, and patient movement
- Safety alarms alert caregivers if target pressure is not met or therapy is interrupted

SENSAT.R.A.C.™ Tubing
- Efficiently draws exudate away from the wound through the large inner lumen
- Independently monitors target pressure at the wound through outer sensing lumens

SENSAT.R.A.C.™ Pad
- Distributes negative pressure to individual sensing lumens
- Supports patient comfort with a low profile design
Why SENSAT.R.A.C.™ Technology?

KCI V.A.C.® Negative Pressure Wound Therapy integrated with SENSAT.R.A.C.™ Technology was shown in bench testing to perform significantly better in accurately delivering programmed negative pressure at the simulated wound site and efficiently removing fluid from the simulated wound site.

A bench NPWT study demonstrated the KCI ACTIV.A.C.™ Negative Pressure Wound Therapy System, which has SENSAT.R.A.C.™ Technology, delivered target negative pressure (-125mmHg) to the simulated wound site when the dressing was elevated 36 inches above the therapy unit and simulated wound fluid injected into dressing at 0.83mL/min. The Genadyne XLRB® Negative Pressure Wound Therapy Unit and the Medela Invia® Motion™ Negative Pressure Wound Therapy Unit showed a drop in pressure due to height difference from the simulated wound and removal of simulated wound fluid from the dressing (3 units/group x 3 dressing/unit). In another bench study, therapy units were placed 36 inches above dressed simulated wounds, with inline canisters for fluid collection 19 inches above the wounds (8 dressings per group using 3 units/group). Two of the three units were each tested with three dressings. The third unit was tested with two dressings. Simulated wound fluid (180mL; 14 cP viscosity) was injected into the dressings and therapy units started, along with a timer. Fluid volume in the inline canister was measured over 24 hours. Both Genadyne XLRB® and Medela Invia® Motion™ Units removed lower volumes of simulated wound fluid compared to KCI ACTIV.A.C.™ Therapy Systems over the 24 hour period.

NOTES:
- Correlation of bench-top results in humans has not been established in specific clinical studies.
- V.A.C.® Therapy target pressure can vary +/- 10mmHg (per Instructions for Use).
- The fluid inflow rate used was 0.83mL/min of an albumin based simulated wound exudate

Key Takeaway for Negative Pressure Delivery

Under similar test conditions, ACTIV.A.C.™ Therapy Unit maintained target negative pressure at the simulated wound site, unlike XLRB® and Invia® Motion™ Units which had significant losses in negative pressure delivery.

For more information, call 800.275.4524 or visit acelity.com

References:
1. Kilpadi DV, Kauffman C. Comparing fluid removal by negative pressure wound therapy systems from simulated wound sites. Presented at the 36th John A. Boswick, MD Burn and Wound Care Symposium, February 15-19, 2014, Maui, HI.
2. Kilpadi DV, Kauffman C. Negative pressure wound therapy (NPWT) systems: Ability to deliver prescribed negative pressure (NP) to the wound site. Presented at the Symposium on Advanced Wound Care. Spring, April 23-27, 2014, Orlando, FL.

NOTE: Specific indications, contraindications, warnings, precautions and safety information exist for KCI products and therapies. Please consult a physician and product instructions for use prior to application. Rx only.

Copyright 2014, 2018 KCI Licensing, Inc. All rights reserved. XLRB is a trademark of Genadyne. Invia Motion is a trademark of Medela. Unless otherwise designated, all trademarks are proprietary to KCI Licensing, Inc., its affiliates and/or licensors. LIT#29-L-195 • PRA-PM-US-00803 (10/18)